If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-17.5t+6.6=0
a = 4.9; b = -17.5; c = +6.6;
Δ = b2-4ac
Δ = -17.52-4·4.9·6.6
Δ = 176.89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17.5)-\sqrt{176.89}}{2*4.9}=\frac{17.5-\sqrt{176.89}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17.5)+\sqrt{176.89}}{2*4.9}=\frac{17.5+\sqrt{176.89}}{9.8} $
| 6a+1.1=7a-6.7 | | 8q+2=98 | | -5w-172w+11= | | (2m+6)=2 | | 2x/1=1x/2 | | x=180-92-78 | | 5+r/19+r=8/9 | | 2-d=2d-4 | | 4(x-1.9)=52 | | 10+3(-9n+1)=-2-2+4 | | 7r+29=2r-31 | | x=180-(2x-255) | | 8x^2+6x=-10 | | 11l-9=4l+5 | | n-26=15 | | 9w-9-2=-7+7(w-8) | | 5x=78,125 | | 3(2x+4)=26x+10 | | 32=8(x+1 | | 38-5k=3k-42 | | 12x–9=4x+15 | | -1x=-8+2 | | 27q+²=3⁵-q | | 9u-18=2u+18 | | 2=1/3*3+x | | 7-v=246 | | 7x+18=2x-22 | | m/5m=45 | | -5(c+3)=-5c-15 | | 12(3r-14)=4(13-r) | | 98c=124.50 | | -14+7-2x=7 |